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dE = TdS − PdVBasic
Thermodynamics

Sudden expansion, fluid fills empty
space without loss of energy.

dE = 0    PdV > 0   therefore  dS > 0

Gradual expansion (equilibrium maintained),
fluid loses energy through PdV work.

dE = −PdV  if and only if  dS = 0 Isentropic
Adiabatic

Perfect Fluid

Hot

Hot

Hot

Hot

Cool
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3c 2 ρ(t)+ 3P(t)[ ]The second/dynamical
Friedmann Equation€ 
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3c 2 ρ(t)− k c 2

a(t)( )2

The Friedmann
Equation

Λ=0

Together with  the perfect fluid assumption dE=−PdV gives
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ρ > 0 , P ≥ 0
⇒ ˙ ̇ a (t)< 0  for all t

No static
Universes!
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˙ ̇ a (t) < 0 , ˙ a (t) > 0 for early t
⇒ a(t) = 0  at finite t

Big
Bang!
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Metric Tensor gµν

Riemann Tensor Rα
βγδ

Ricci Tensor Rµν = Rα
µαν

Ricci Scalar R = Rα
α
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Stress- Energy Tensor  Tµν
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For continuity
≡Gµν  Einstein Tensor

1 2 4 4 3 4 4 
− Λ

Unknown
{ gµν = 8πGN

To match
 Newton

1 2 3 
Tµν
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Gµν = 8πTµν Einstein Field Equation(s)
B. Riemann
German
Formalized non-
Euclidean
geometry (1854)

G. Ricci-
Curbastro
Italian
Tensor calculus
(1888)

Column A Column B

Λ=0



“The Heavens endure from
everlasting to everlasting.”
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a(t)( )2 +
Λ
3 The full Friedmann

equations with non-
zero “cosmological

constant” Λ

Albert Einstein
German

General Theory of
Relativity (1915);

 Static, closed
universe (1917)
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∃ ρ > 0 , P = 0, Λ > 0, k > 0
⇒ ˙ ̇ a (t) = ˙ a (t) = 0  for all t

Einstein closed,
static Universe



Cosmological “Leftists” vs “Rightists”
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Gµν − Λgµν = 8π Tµν
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Gµν = 8π Tµν + Λgµν

Left: Λ as part of geometry

Right: Λ as part of energy&pressure
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Gµν = 8π

ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 

 

 
 
 
 

 

 

 
 
 
 

+ Λ

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 

 

 
 
 
 

 

 

 
 
 
 

€ 

= 8π

ρ + Λ8π 0 0 0
0 P − Λ8π 0 0
0 0 P − Λ8π 0
0 0 0 P − Λ8π

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Tµν for matter and radiation
in local rest frame

Effective Tµν in the presence of
a cosmological constant

Cosmological constant as
part of General Relativity

Space filled by energy of
uniform density and  P=−ρ

Indistinguishable!



Inflationary Universes

W. de Sitter
Dutch

Vacuum-energy-
filled universes
“de Sitter space”
(1917)
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What if a flat Universe had no matter or
radiation but only cosmological constant
(and/or vacuum energy)?
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Exponentially expanding!

…but yet oddly static: No beginning,
no ending, H(t) never changes

“de Sitter Space”
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a(t) = Constant "Minkowski"
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Negative pressure: not so exotic….
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dE = ρ dV = −PdV
∴ P = −ρ

Constant energy density
⇒ Negative pressure

E
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Light Cones in De Sitter Space
t (1/H0)

Now

BB

Radiation Dominated
Inflationary De Sitter

χ
(c/H0)

Robertson-Walker
Coordinates
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χγ (t) = ±
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dt + Const∫

= ±2c t t0( )1 2 + Const
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a(t) = K exp Ht( ) H0 = H

χγ (t) = ±
c
a(t)

dt + Const∫

= ±
c
K
exp −Ht( ) + Const

Radiation-filled

Vacuum-energy-filled

Us



Inflation solves (I): Uniformity/Entropy

t (1/H0)
Now

BB no inflation →

Radiation Dominated
Inflationary De Sitter

χ
(c/H0)

Robertson-Walker
Coordinates

Us

BB with inflation →

CMB decouples →
In

fla
tio

n

Alan Guth
American

Cosmological
inflation (1981)



Inflation Solves (II): Early Flatness

(Yet another) Friedmann Equation
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dt

ΩM(t) −1[ ]
Non -Flatness

1 2 4 3 4 

ΩM(t) −1[ ]
Non -Flatness

1 2 4 3 4 

= H(t)ΩM(t) =
˙ a (t)
a(t)

ΩM(t)

Λ=0

Non-Flatness grows  ~a(t) ⇒ Huge increase!?
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Cosmological
Constant

{
Dominates
with increasing
a(t), leading to
faster increase



Flat
(Generic)

Λ≠0

Open Closed



Our lonely future?

Horizon

Matter/radiation Dark energy



The New Standard Cosmology
in Four Easy Steps

Inflation, dominated by “inflaton field” vacuum energy

Radiation-dominated thermal equilibrium

Matter-dominated, non-uniformities grow (structure)

Start of acceleration in a(t), return to domination by
cosmological constant and/or vacuum energy.
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Points to take home

• For full behavior of a(t), need an equation of state (P/ρ)

• Matter/radiation universes: evolving, and finite age

• Cosmological constant Λ a legal but unneeded piece of GR;
Λ is indistinguishable from constant-density vacuum energy

• All Λ>0 evolve to inflationary (de Sitter) universes; Do we
live at a special time?  Part 2

• Early inflation solves flatness and uniformity puzzles

• Life in inflationary spaces is very lonely


